

FOXcore C 9 MV RC

Flux cored wire, high-alloyed, creep resistant

Classifications							
EN ISO 17634-A	EN ISO 17634-B	AWS A5.36/SFA-5.36	AWS A5.36M/SFA5.36M				
T ZCrMo9VNb P M21 1 H5	T69T1-1M21-9C1MV-H5	E91T1-M21PY-B91-H4	E621T1-M21PY-B91-H4				

Characteristics and typical fields of application

FOXcore C 9 MV RC is a rutile- basic flux cored wire for the welding of creep resistant, tempered 9 % chromium steels in turbine-, boiler- and pipework construction as well as in the foundry industry. The wire is especially designed for the ASTM steels T91 / P91. The flux cored wire is designed for out of position welding technology. The chemistry of the product is according to LOW NICKEL content requirements, meaning (Ni + Mn) < 1wt.%.

Base materials

Similar alloyed creep resistant steels like

1.4903 X10CrMoVNb9-1, G-X12CrMoVNbN9-1

ASTM A335 Gr. P91, A336 Gr. P91, A369 Gr. FP91, A387 Gr. 91, A213/213M Gr. T91 A 234 WP91, A182 F91

Typical analysis of all-weld metal wt%								
С	Si	Mn	Cr	Ni	Мо	V	Nb	N
0.10	0.2	0.7	9.0	0.2	1.0	0.2	0.04	0.04

Mechanical properties of all-weld metal								
Heat Treatment	Yield strength R _{p0,2}	Tensile strength R _m	Elongation A (L ₀ =5d ₀)	Impact work ISO-V KV J				
	MPa	MPa	%	+20°C				
a ₁	580 (≥ 565)	720 (690 – 760)	18 (≥ 14)	60 (≥ 32)				
a_2	590 (≥ 565)	730 (690 – 760)	18 (≥ 14)	40 (≥ 32)				

annealed 760°C / 4 h / furnace down to 300°C / air (acc. EN-ISO) shielding gas Ar + 18% CO₂

annealed 760° C / 2 h / furnace down to 300° C / air (acc. AWS) shielding gas Ar + 18% CO₂

Operating data Polarity: Shielding gas: Redrying: ø (mm) Amps A Voltage V 160 - 300DC (+) (EN ISO 14175) if necessary 1.2 25 - 35M21 150°C/24 h Consumption: approx. 15 - 18

Welding with conventional or pulsed power sources (preferably slightly trailing torch position, angle approx. 80°). Recommended stick out 15 - 20 mm and length of arc 3 - 5 mm. Preheating and interpass temperature 200 - 300° C (392 - 572° F). After welding, the weld joint should cool down below 80° C (176° F) to finish the martensite transformation. In case of greater wall thickness or complex components the possibility of residual stresses must be considered. The following post weld heat treatment is recommended: annealing 760° C (1400° F)/min. 150° C (1022° F) max. 150° C (1022° F) max.

Approvals: TÜV